
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2007; 53:175–199
Published online 19 June 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1254

Extension of domain-free discretization method to simulate
compressible flows over fixed and moving bodies

C. H. Zhou1,2, C. Shu2,∗,† and Y. Z. Wu1

1Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics,
Nanjing, 210016, People’s Republic of China

2Department of Mechanical Engineering, National University of Singapore,
Singapore 119260, Singapore

SUMMARY

This paper is the first endeavour to present the local domain-free discretization (DFD) method for the
solution of compressible Navier–Stokes/Euler equations in conservative form. The discretization strategy
of DFD is that for any complex geometry, there is no need to introduce coordinate transformation and
the discrete form of governing equations at an interior point may involve some points outside the solution
domain. The functional values at the exterior dependent points are updated at each time step to impose
the wall boundary condition by the approximate form of solution near the boundary. Some points inside
the solution domain are constructed for the approximate form of solution, and the flow variables at
constructed points are evaluated by the linear interpolation on triangles. The numerical schemes used
in DFD are the finite element Galerkin method for spatial discretization and the dual-time scheme for
temporal discretization. Some numerical results of compressible flows over fixed and moving bodies are
presented to validate the local DFD method. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, Shu et al. [1, 2] proposed a domain-free discretization (DFD) method to solve partial
differential equations (PDEs) on irregular domains. DFD is inspired from the analytical method.

It is well known that the analytical method takes two separate steps to get the closed-form
solution of a PDE. In the first step, a general solution is pursued which is only based on the
given PDE. Then in the second step, the expression of the general solution is substituted into
the boundary conditions to determine the unknown coefficients in the general solution. Clearly, the
first step does not involve the solution domain. The solution domain (geometry of the problem) is
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only involved in the second step when the boundary condition is implemented. So the analytical
method can be well applied to both regular and irregular domain problems.

In contrast, the conventional numerical method solves the PDE by directly coupling it with the
boundary condition. In other words, the numerical solution is obtained in just one step. In this
step, the PDE is discretized on the solution domain with proper implementation of the boundary
condition. We can see clearly that the discretization of the PDE in a numerical method is problem
dependent. Due to this feature, some numerical methods such as finite difference schemes can only
be applied to regular domain problems. When they are applied to solve irregular domain problems,
the coordinate transformation is a must. In general, the process of coordinate transformation is
very complicated, and problem dependent. To overcome the drawbacks of conventional numerical
methods that strongly couple the PDE with the solution domain, the DFD method was developed
from the process of analytical method.

In the DFD, the implementation of the boundary condition and discretization of the governing
equation are treated separately. The selected point for numerical discretization of PDE is inside
the solution domain, but the discrete form of the PDE at the selected point may involve some
points outside the solution domain, which serve as the role to implement the boundary condition.
The key process in the DFD method is how to evaluate the functional values at the points outside
the solution domain. This work can be done from the hint of the analytical method. As we know,
for analytical methods, once the smooth solution of a PDE is obtained, it exactly satisfies the
PDE not only at the interior points, but also at the exterior points outside the solution domain.
So we can simply substitute the coordinates of exterior points into the closed-form solution to
get the functional value. Although the hint is very useful, it is not applicable in the numerical
computation. This is because for the case to do numerical computation, the closed-form solution
is usually unknown. Otherwise, we do not need the numerical computation. On the other hand,
although the closed-form solution in the whole solution domain is difficult to be obtained, it is
still possible to get approximate form of the solution in the local region, for example, along a
mesh line. The evaluation process of functional value at exterior point is termed as extrapolation.
In the earlier applications of DFD [1, 2], the approximate form of solution is pursued along the
whole mesh line, which only involves two boundary points. This way is very efficient for singly
connected domain [1] and doubly connected domain [2] problems, but not so suitable for more
complex domains since the mesh line may involve more than two boundary points. To remove this
difficulty and make the method be more general, the local DFD was presented. In the local DFD,
the Cartesian grid is used, and the low-order schemes are adopted for numerical discretization and
approximate form of the solution. Since the Cartesian grid is usually used, the local DFD method
becomes a kind of Cartesian grid solvers. Therefore, the mesh generation in the local DFD method
is very simple and straightforward. Since one can use a mesh that is not fitted to the wall boundary
in the DFD method, the mesh can stay fixed while the body is moving. In this process, only the
status of mesh points, either inside the solution domain or outside the solution domain, is changed.
So another advantage of the local DFD method is that we do not need to generate a new mesh or
deform the previous mesh at each time step for a moving boundary problem. Compared with the
mesh-deforming or mesh-moving methods [3, 4], there is no special difficulty for the local DFD
method to simulate the flows over multi-moving-bodies.

On the other hand, we notice that there are a variety of Cartesian grid methods in the literature,
which have different features from the local DFD method. One of them is the immersed boundary
method (IBM) [5, 6]. IBM solves the governing equation in the whole domain including the region
inside the solid boundary. It is actually an iterative process to satisfy the non-slip boundary condition
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by distributing the restoration force, which is resulted from unsatisfying of the boundary condition,
to the Navier–Stokes equations. Thus, in the IBM, the boundary condition is approximately satisfied.
In contrast, the DFD method discretizes the governing equation in the solution domain, but its
discrete form may involve some points outside the solution domain, which are used to consider
the effect of boundary conditions. In the DFD, the boundary condition is enforced directly. To
the best of our knowledge, IBM is usually limited to the numerical simulation of incompressible
viscous flows.

Another popular Cartesian grid method is the Cartesian grid embedded boundary method [7–9]
presented by the group of Colella for heat equation and hyperbolic conservative equations. This
approach is based on the finite volume discretization on a grid obtained from intersecting the
domain with a Cartesian grid, and the finite volume grid contains the actual boundary. For irregular
solution domains, there exist irregular cells cut by the embedded boundary, which are involved
in the computation. In our approach, the cells are triangles obtained directly from the Cartesian
grid, and the actual boundary does not appear in the computational mesh and the discrete form of
PDEs does not involve any irregular cells. This is the main difference between our approach and
the work of Colella’s group. In Colella’s method, the state variables are defined at the cell centre,
even when the centre is outside the solution domain. Some extrapolations are used to compute the
flux at the boundary faces and the covered faces. In this sense, the two methods are similar, but
their extrapolation procedure is different. Colella’s method [7–9] computes the flux at a covered
face or a boundary face by solving a Riemann problem. In our evaluation of the state variables at
the points outside the solution domain, the velocity extrapolation is similar to the local mirroring
extrapolation used by Arienti et al. [10], and the density and pressure extrapolation is based
on the local simplified flow equations which are different from constant extrapolation of Arienti
et al. [10]. Arienti et al. [10] presented a ghost-fluid Eulerian–Lagrangian method for fluid–solid
interaction problems. It was originated from the ghost-fluid method (GFM).

GFM was proposed by Fedkiw et al. [11] and originated as an algorithm for handling multi-fluid
problems. The original GFM is designed to capture the discontinuous interfaces with an Eulerian
solver on each side. Within a prescribed distance of an interface that depends exclusively on the
stencil of the numerical scheme, an Eulerian grid point is a real node to one solver and a ghost
node to the other. In GFM, the pressure and normal velocity of the ghost fluid are set identically
equal to the pressure and normal velocity of the real fluid at each point, while the entropy and
tangential velocity of the ghost fluid are extrapolated in the normal direction from the real fluid at
another side of the interface. In physics, the definition of state variables at a ghost node in GFM is
different from extension of the solution at interior points to the exterior dependent points in DFD.
For the Poisson equation on irregular domains, using GFM [12], the value of solution variable at
dependent point outside the boundary (ghost node) is defined by constant, linear, and quadratic
extrapolation from the solution domain, while in our approach, the local mirroring extrapolation
is taken to avoid the overshoot of an extrapolated variable when the boundary is very close to
an interior point. The Cartesian grid method of Morton and Mayers [13] also uses a different
extrapolation procedure from the DFD method. In DFD, the mirroring extrapolation is performed
along the normal direction to the boundary so that the uniqueness can be ensured in the process. In
Reference [13], the extrapolation to the exterior point is along the coordinate lines. So for different
interior points, the extended solution at an exterior point may have multi-values.

So far, the DFD method has been successfully applied to simulate many incompressible
flows [1, 2]. Its performance for the compressible flow simulation is still not clear as compressible
flows involve the sharp shock waves. This paper is the first endeavour to present the local DFD
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method for the solution of compressible Navier–Stokes/Euler equations in the conservative form.
The functional values at the exterior points are updated at each time step, in order to satisfy the
wall boundary condition, by the approximate form of solution along the normal direction to the
boundary. The accuracy of the DFD method depends on the numerical schemes used. In this paper,
the second-order finite element Galerkin method is applied for spatial discretization. To show the
accuracy of the local DFD method, the two-dimensional Poisson equation on a domain with curved
boundary is solved on a series of meshes. Numerical experiments do confirm that the present local
DFD method has the second-order accuracy. To show the capability of the local DFD method for
simulation of compressible flows, flows around fixed and moving airfoils and circular cylinders
are simulated and the present results are compared with available data in the literature.

2. GOVERNING EQUATIONS

The dimensionless, two-dimensional compressible Navier–Stokes equations in the conservative
form can be written as

�w

�t
+ � fc

�x
+ �gc

�y
=

√
�M∞
Re∞

[
� fv
�x

+ �gv
�y

]
(1)

where w is the vector of conservative variables, fc and gc are the convective flux vectors, fv and
gv are the viscous flux vectors, M∞ is the Mach number of the free stream, Re∞ is the Reynolds
number of the free stream, and � is the ratio of specific heats of fluid and taken as 1.4 for air.
When Re∞ → ∞, the above Navier–Stokes equations reduce to the Euler equations governing the
inviscid compressible flows.

w, fc and gc are given by

w =

⎡
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⎤
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⎡
⎢⎢⎢⎢⎣
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⎤
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⎤
⎥⎥⎥⎥⎦ (2)

where � represents the fluid density, u and v are the x and y components of the velocity, E is the
total energy, and p is the pressure which can be calculated from the following equation of state
for a perfect gas:

p= �(� − 1)

(
E − u2 + v2

2

)
(3)

fv and gv are given by

fv =

⎡
⎢⎢⎢⎣

0

�xx

�xy

u�xx + v�xy − qx

⎤
⎥⎥⎥⎦ , gv =

⎡
⎢⎢⎢⎣

0

�xy

�yy

u�xy + v�yy − qy

⎤
⎥⎥⎥⎦ (4)
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where � represents the stress tensor and q is the heat flux vector

�xx = 2�ux − 2
3�(ux + vy), �yy = 2�vy − 2

3�(ux + vy), �xy = �(uy + vx ) (5)

qx = �

� − 1

( �

Pr

) �(p/�)

�x
, qy = �

� − 1

( �

Pr

) �(p/�)

�y
(6)

In (5) and (6), Pr is the Prandtl number taken as 0.72 for air, � is the molecular viscosity given
by the Sutherland law.

3. LOCAL DFD DISCRETIZATION AND ARTIFICIAL DISSIPATION

As described in the introduction, in the local DFD method, the wall boundary can be superimposed
upon the computational mesh. We suppose that �⊂ R2 is a connected open set containing a body
�, as shown in Figure 1. For the flow around �, the solution domain can be represented by �\�.
We denote the boundary of � and � by � and �, respectively. With h a space discretization step,
a triangulation Th of � is introduced, as shown in Figure 2.

As indicated in the introduction, DFD is a discretization strategy. Its essence is that the discrete
form of governing equation can involve some points outside the solution domain. It still needs
a numerical approach to do discretization and transfer the differential equation into a discrete
form. The spatial discretization employed here is similar to the Galerkin finite element approach
proposed by Mavriplis and Jameson [14]. The procedure begins by storing flow variables at the
vertices of triangles, and the flow variables are approximated by piecewise linear functions. Let FC
denote the convective flux tensor. Its Cartesian components are fc and gc. Similarly, FV denotes
the viscous flux tensor, and its Cartesian components are fv and gv. The Navier–Stokes equation

ω

γ

Γ

Ω

Figure 1. Configuration of solution domain.
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Figure 2. A triangulation Th of �.

can then be rewritten in the following form:

�w

�t
+ ∇ · FC =

√
�M∞
Re∞

∇ · FV (7)

The Galerkin formulation of (7) is

�
�t

∫∫
�

�w dx dy +
∫∫

�
�∇ · FC dx dy =

√
�M∞
Re∞

∫∫
�

�∇ · FV dx dy (8)

where � is a test function. Integrating the flux integrals in (8) by parts gives

�
�t

∫∫
�

�w dx dy =
∫∫

�
FC · ∇� dx dy −

√
�M∞
Re∞

∫∫
�
FV · ∇� dx dy

−
∫

�
n · FC� d� +

√
�M∞
Re∞

∫
�
n · FV� d�

(9)

where n is the outward normal unit vector at �. In order to evaluate the flux at each vertex P ,
� is taken as a piecewise linear function which is equal to 1 at node P and vanishes at all other
vertices. Therefore, the integrals in the above equation are non-zero only over the triangles that
contain the vertex P . As a result, the influence domain of P can be defined as shown in Figure 3.

The convective fluxes FC can be taken as piecewise linear functions in space, and the viscous
fluxes FV can be taken as piecewise constants over each triangle since they are formed from the
first-order derivatives of the flow variables. Evaluating the flux integrals with these assumptions
and employing the concept of a lumped mass matrix while integrating the term on the left-hand
side (LHS) of (9), one obtains

�P
�wP

�t
=

n∑
e=1

F A
C + FB

C

2
· �LAB −

√
�M∞
Re∞

n∑
e=1

3

2
Fe
V · �LAB (10)
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Figure 3. Influence domain of node P (left: for an interior node and right: for a node on the boundary �).

In the above formulation, the summations are over all the triangles in the influence domain
of P . �P represents the surface area of the domain. �L AB represents the directed (outward
normal) edge length of the face of each triangle e on the outer boundary of the influence domain;
F A
C and FB

C are the convective fluxes at two vertices of the edge, and Fe
V is the viscous flux in

triangle e.
For the numerical simulation of the flow around the body �, the boundary � can be regarded as

the outer boundary of the solution domain. In this work, the conventional boundary conditions at
� are imposed and the Steger–Warming flux splitting scheme [15] is applied at the in- and outflow
boundaries.

The domain � is an auxiliary domain and the boundary � can be arbitrary if it is far enough
from �. Here we should indicate that there is no imposition of wall boundary conditions in the
spatial discretization and the discrete form of the Navier–Stokes equations is irrelevant of the
solution domain according to the concept of DFD. This is the main difference from the original
approach in Reference [14]. The implementation of wall boundary conditions will be discussed in
Section 5.

The artificial dissipation operator proposed by Jameson et al. [16] is adopted to prevent oscil-
lations near shocks and damp high-frequency errors. For completeness, a brief description on the
construction of this operator is given below. It is a blend of undivided Laplacian and biharmonic
operators in the flow field. At node i , the undivided Laplacian of w can be approximated by the
summation of the differences of w along all edges meeting at i

(∇2w)i =
n∑

k=1
(wk − wi ) (11)

where n represents the number of edges meeting at i . Since the biharmonic operator can be viewed
as a Laplacian operator of another Laplacian operator, the artificial term can be expressed as

D(wi ) =
n∑

k=1
	k{
2k(wi − wk) − 
4k(∇2wi − ∇2wk)} (12)

In the above equation, 
2 and 
4 are adaptive coefficients designed to switch on sufficient
dissipation when it is needed, and 	 is a factor proportional to the maximum eigenvalue of the
Euler equations.
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4. TIME MARCHING

The spatial discretization transforms Equation (1) into the following set of coupled ordinary
differential equations:

�i
dwi

dt
+ R(wi ) = 0, i = 1, 2, 3, . . . , N (13)

where N is the number of the mesh points and

R(w)= Q(w) − D(w) (14)

In the above equation, Q(w) represents the discrete approximation of the convective fluxes, and
D(w) represents the dissipative term including the discrete approximation of the viscous fluxes
and the artificial dissipation.

Following the work of Jameson [17], an implicit equation system can be obtained by approxi-
mating Equation (13) at the time level (n + 1)

�i
dwn+1

i

dt
+ R(wn+1

i ) = 0 (15)

When the second-order time discretization is used, Equation (15) becomes

�i
3wn+1

i − 4wn
i + wn−1

i

2�t
+ R(wn+1

i ) = R(wn+1
i ) = 0 (16)

Adding a derivative with respect to a fictitious pseudo time � to Equation (16) gives

�i
dwn+1

i

d�
+ R(wn+1

i ) = 0 (17)

The solution of equation system (17) can be obtained by marching in pseudo time to a
steady state. In this work, the five-stage, hybrid, time-stepping scheme proposed by Mavriplis
and Jameson [14] is adopted to march in the pseudo time. For each point, the allowable pseudo-
time-step is chosen by

��i = min

(
��i ,

2�t

3

)
(18)

where ��i is the local pseudo-time-step considering the stability limitation due to both the con-
vective and diffusive characters of the Navier–Stokes equations.

5. IMPLEMENTATION OF WALL BOUNDARY CONDITIONS

According to the spatial discretization presented in Section 3, the calculation of the conservative
variables at any mesh point inside the solution domain depends on the flow variables at the points
connected to this point by an edge of triangle, as shown in Figure 3. For an edge intersecting with
the wall boundary, the interior end point is a computed node and the exterior end point is one of
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C

D

F1

W

F2

Figure 4. Interior computed point, exterior dependent point, and fictitious points.

dependent points of the interior end point. All this kind of interior computed nodes near the wall
boundary has at least one dependent point outside the solution domain. An example is shown in
Figure 4, where an interior computed node is denoted by C and an exterior dependent point is
represented by D. The key process of the DFD method is how to evaluate the functional values at
the exterior dependent points.

In this work, the values of flow variables at the exterior dependent points are extrapolated
from the flow field along the normal direction to the wall boundary, or determined by the local
simplified flow equations at the boundary. Since all flow variables are approximated by piecewise
linear functions in the spatial discretization, the linear extrapolation will be reasonable. Therefore,
some points inside the solution domain should be constructed for the extrapolation and the solution
of the local simplified flow equations. These points may not be the mesh points, so they are termed
as fictitious points.

The image point (to the wall) of a given exterior dependent point is chosen as its first fictitious
point, and it can be found along the normal direction to the wall boundary, as shown in Figure 4.
In this figure, the first fictitious point of the exterior dependent point D is denoted by F1, and
the intersection point of the line in the normal direction with the wall boundary is denoted by
W . We suppose that this fictitious point is located in a triangle � ∈ Th . If all the three vertices of
� are inside the solution domain, as shown in Figure 4, this triangle can be used to evaluate the
flow variables at the fictitious point F1 by the linear interpolation. So we denote this interpolation
triangle by �I .

If the three vertices of � are not all inside the solution domain, the values of the flow variables
at the exterior vertex are not known. A new interpolation triangle �I /∈ Th should be constructed
locally to evaluate the velocity components at the first fictitious point. For the example shown in
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C D

F1

F2

Figure 5. Local construction of the interpolation triangle �I �∈ Th .

Figure 5, the construction can be done easily by linking one interior vertex of � to the intersection
point of the wall boundary with its opposite edge. In this case, the values of pressure, density, and
tangential component of velocity (for inviscid flow computations) at the boundary vertex of �I
are not known, so the values of these variables at the fictitious point F1 cannot be determined. To
overcome this difficulty, we construct the second fictitious point for the given exterior dependent
point. The point which satisfies: (1) on the line normal to the wall boundary that passes through
the exterior dependent point; (2) the three vertices of the triangle containing this point (i.e. the
interpolation triangle) are all inside the field; and (3) closest to the wall boundary, is defined as
the second fictitious point F2 as shown in Figure 5.

So the flow variables at the three vertices of the interpolation triangle �I either take the current
computed values or are determined directly from the known component values of velocity at the
boundary-intersection points. By the linear interpolation over �I , the values of the flow variables
at the fictitious point can be obtained. For example, the horizontal component of velocity at the
fictitious point is computed by

u f =
3∑

k=1
�k(x f , y f )uk (19)

where the summation over k refers to the three vertices of the interpolation triangle �I .
The values of flow variables at the fictitious points are used in conjunction with the wall boundary

condition and the simplified flow equations to update the values of flow variables at the exterior
dependent points at each time step.

Now, we discuss the evaluation of the flow variables at the exterior dependent point with
reference to Figure 6.
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WALL
D

W

F

η

ξFLOW

FIELD

F2

Figure 6. Evaluation of the flow variables at exterior dependent point: D: exterior dependent
point, F : fictitious point, W : intersection point, F2: additional fictitious point for approximation of

the second-order derivative of q�.

For inviscid flows, the Cartesian components of velocity at the exterior dependent point D, ud
and vd , are determined in such a way that the normal velocity to the wall should be zero (i.e. no
flow through the wall). Because there is no shear stress in inviscid flows, we can assume that in
the small region near the wall, the tangential component of velocity does not change along the
normal direction to the wall. With the wall boundary condition and the assumption, the tangential
and normal components of the velocity at the dependent points can be obtained by

q�d = q� f
= q�w

(20)

q�d = 2q�w
− q� f

, q�w
= V�w

(21)

In (20) and (21), � and � represents the normal and tangential direction to the wall boundary at
W , V�w

is the normal component of the velocity of body movement at W , q�d is the tangential
component of the velocity at the exterior dependent point D. The other variables in (20) and (21),
such as q�d and q� f

, have a similar meaning as q�d . From (20) and (21), the Cartesian components
of the velocity at the exterior dependent point D can be computed by

ud = 2�x V�w
+ u f (�

2
y − �2x ) − 2v f �x�y (22)

vd = 2�yV�w
+ v f (�

2
x − �2y) − 2u f �x�y (23)

where �x and �y are the Cartesian components of the outward unit normal vector at the boundary
point W .

The pressure at the exterior dependent point D, pd , is determined from the following normal
momentum equation in the local coordinates:(

�p
��

)
w

= −�q�w

�t
+ �w(q�w

)2

Rw

(24)
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In the above equation, Rw is the local radius of the wall boundary at the intersection point W , and
the density at W is approximated by the following interpolation:

�w = ��wd� f + �� f w�d
�� f d

(25)

where ��wd represents the distance in the normal direction between W and D, �� f w and �� f d
have a similar meaning as ��wd . By discretizing the partial derivative on the left-hand side of
Equation (24) and using Equations (20) and (21), we obtain

pf − pd
�� f d

=−�V�w

�t
+ (��wd� f + �� f w�d)(q� f

)2

Rw�� f d
(26)

With the assumption of an adiabatic wall (�T/��)w = 0 i.e. [(�/��)(p/�)]w = 0, we have

pd
�d

= pf
� f

(27)

Substituting Equation (27) into Equation (26), pd and �d are given by

pd = Bpf , �d = B� f (28)

with

B =
Rw pf + Rw�� f d

�V�w

�t
− � f ��wd(q� f

)2

Rw pf + � f �� f w(q� f
)2

(29)

For viscous flows, the Cartesian components of velocity at the exterior dependent point, ud and
vd , are determined from the non-slip boundary condition at the wall, that is, the total velocity q at
the point W is equal to the velocity of body movement. So ud and vd can be computed by

ud = 2uw − u f , uw = Vxw (30)

vd = 2vw − v f , vw = Vyw (31)

The tangential and normal components of velocity at the boundary point W are

q�w
= V�w

, q�w
= V�w

(32)

pd , the pressure at the exterior dependent point D, is determined from the following simplified
normal momentum equation:

(
�p
��

)
w

=−�q�w

�t
+ �w(q�w

)2

Rw

+ �w

√
�M∞

Re∞

(
�2q�

��2

)
w

(33)

For viscous flows, an adiabatic wall is also assumed, so the viscosity coefficient at the boundary
point W can be obtained by �w = � f . In (33), �w is also approximated by the linear interpola-
tion (25). To approximate the second-order partial derivative on the right-hand side (RHS) of (33),
the second fictitious point should be introduced as shown in Figure 4. This can be done in the
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C1

D

C2

Figure 7. Case 1 of multi-value points.

similar way as we find the second fictitious point shown in Figure 5. This additional fictitious
point is denoted by F2 in Figure 6. After approximating the spatial derivatives in Equation (33)
by the second-order difference schemes and using Equations (30) and (31) with the assumption of
an adiabatic wall (27), we obtain

pd =Cpf , �d =C� f (34)

with

C =
Rw pf +Rw�� f d

[
�V�w

�t
−� f

√
�M∞

2Re∞

( q� f2
−q� f

�� f f2�� f2w
− q� f

−V�w

�� f w�� f2w

)]
−� f ��wd(q� f

)2

Rw pf +� f �� f w(q� f
)2

(35)

Now, we discuss some special cases where the flow variables at some points may have multi-
values. These cases are associated with the thin wall boundary, the width of which is smaller than
two or one grid interval.

The first case is shown in Figure 7. It is obvious that near the tailing edge of an airfoil, the
exterior point D corresponds to two computed mesh points C1 and C2. The point C1 is above
the airfoil and C2 is under the airfoil. So each flow variable at D has two values: one for the
computation at C1 is extrapolated along the normal direction to the upper wall from the flow field
above the airfoil, and another for the computation at C2 is extrapolated along the normal direction
to the lower wall from the flow field under the airfoil.

The second case is that there exist some ‘exterior’ dependent points inside the solution domain.
As shown in Figure 8, the point C1 is, of course, a computed mesh point under the airfoil, but it is
also the exterior (to the upper wall) dependent point of the computed point C2 above the airfoil.
So the point C1 is also denoted by D2 in Figure 8. Each flow variable at C1 has two values:
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C2  (D1)

C1  (D2)

Figure 8. Case 2 of multi-value points.

the real one is computed from the governing equations, and the other is extrapolated along the
normal direction to the upper wall from the flow field above the airfoil, which is used to reflect
the boundary effect. Similarly, the computed point C2 is also the exterior dependent point (also
denoted by D1) of C1. Each flow variable at C2 also has two values: the real one is obtained by
solving the governing equations, and the other is obtained by the extrapolation from the flow field
under the airfoil to consider the effect of boundary condition.

6. NUMERICAL EXPERIMENTS

Some numerical examples will be shown in this section to provide a validation to the local DFD
method described above for the Navier–Stokes and the Euler equations in the conservative form.

6.1. Convergence rate of local DFD method for two-dimensional Poisson equation

To show the convergence rate of the local DFD method used in this work, the test problem of the
two-dimensional Poisson equation is solved on the domain �\� as shown in Figure 1

�2u
�x2

+ �2u
�y2

= f (x, y) in �\� (36)

Here � is the square domain �=[0, 1]× [0, 1], and � is a circle located at the centre of � with
the radius of 0.25. For simplicity, the analytical solution uexact is given to determine the source
function f (x, y) and to measure the numerical error. The Dirichlet boundary condition is given
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Table I. Convergence rate of local DFD method for two-dimensional Poisson equation.

Function u1 Function u2

Mesh spacing h L1-error Order of accuracy L1-error Order of accuracy

2.0× 10−2 1.18× 10−4 — 6.04× 10−5 —
1.0× 10−2 2.23× 10−5 2.34 1.46× 10−5 2.06
5.0× 10−3 6.10× 10−6 1.93 3.57× 10−6 2.03
2.5× 10−3 1.48× 10−6 2.04 9.52× 10−7 1.96

on the boundary, i.e.

u = uexact on � ∪ � (37)

Two functions are selected as the analytical solutions of Equation (36). They are given as follows:

u1 = sin(
x) sin(
y) (38)

u2 =
(
1− x

2

)6 (
1− y

2

)6 +1000(1−x)3x3(1−y)3y3+
(
1− x

2

)6
y6+

(
1− y

2

)6
x6 (39)

The functions u1 and u2 are taken from the work of Ding et al. [18] and Lyche et al. [19],
respectively. In our computations, a uniform Cartesian mesh is generated at first, and then the
triangulation is obtained by dividing one rectangle into two triangles. Table I shows the results
of the numerical convergence test on a series of uniform meshes. It can be observed that in L1

norm, the convergence rate or the accuracy of the local DFD method is about second order for
this smooth problem.

6.2. Inviscid compressible flows past the fixed NACA0012 airfoil

The simulation of inviscid subsonic and transonic flows over a NACA0012 airfoil is chosen to
demonstrate the accuracy of the Euler solutions obtained by the local DFD method. These two
cases (subsonic and transonic) have been studied by many researchers.

To accurately simulate the flow past an airfoil, the triangle mesh is refined gradually in the
region near the wall. The mesh used in the two cases is shown in Figure 9 and the number of
computational points is 28 778. For comparison, the same calculations were also performed on the
structured C-type mesh (70× 320).

In the test case of subsonic flow, the Mach number of free stream is chosen as 0.63 and the
angle of attack is 2◦. The pressure coefficient distribution on the surface is given in Figure 10. The
comparison of present result with the data given from the body-fitted mesh solver demonstrates
good agreement. The lift and drag coefficients computed by the local DFD method are CL = 0.335,
CD =−6.4× 10−5, which compare very well with the results of the body-fitted mesh solver
(CL = 0.336,CD = 2.5× 10−5), the potential flow solver [20] (CL = 0.333,CD =−2.0× 10−4),
and the Euler solver [21] (CL = 0.334,CD =−2.1× 10−5). Figure 11 presents the convergence
history of residuals with the pseudo-time-step. The residual is defined as RES=‖(��/�t)n‖2/
‖(��/�t)1‖2, where the superscript of ��/�t represents the time step.
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Figure 9. Partial view of the mesh used in the local DFD computations.
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Figure 10. Pressure coefficient on the surface of NACA 0012 airfoil for M∞ = 0.63, 	= 2◦.

In the test case of transonic flow, the Mach number of free stream is taken as 0.85 and the angle
of attack is 1◦. The pressure coefficient on the surface is given in Figure 12 and compared with
the results obtained by the body-fitted mesh solver. The shocks captured by the local DFD method
are a little bit sharper than those captured by the body-fitted mesh solver. This small difference is
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Figure 11. Convergence history of local DFD method for flow around
NACA 0012 airfoil, M∞ = 0.63, 	= 2◦.
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Figure 12. Pressure coefficient on the surface of NACA 0012 airfoil for M∞ = 0.85,
	 = 1◦. DFD: CL = 0.373, CD = 0.057. Body-fitted mesh: CL = 0.380, CD = 0.059. Results of

Reference [21]: CL = 0.377, CD = 0.058.

attributed to the geometry-adaptation employed in the mesh generation for the DFD method. The
computed lift and drag coefficients by DFD and the body-fitted mesh solver are very close and
also agree well with other Euler solvers [21, 22].
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Figure 13. Streamlines around a circular cylinder for Re= 30.

Figure 14. Streamlines around a circular cylinder for Re= 40.

6.3. Viscous flows past fixed bodies

In this subsection, the viscous incompressible and compressible flows around fixed bodies are
simulated to demonstrate the accuracy of the Navier–Stokes solutions obtained by the local DFD
method.

The first two cases consist of incompressible flows around a circular cylinder with Reynolds
numbers equal to 30 and 40. The number of the computational mesh points for these cases is
24 641. The Mach number of free stream is taken to be 0.1 in the computation. Figures 13
and 14 display the streamlines around the cylinder at Re= 30, 40, respectively. The computed
length of recirculation zone is 1.60 for Reynolds number of 30, and 2.06 for Reynolds num-
ber of 40. These values agree well with numerical results and experiment data reported in
Reference [23].

The third and forth cases consist of compressible viscous flows past a NACA0012 airfoil and the
calculations are performed on the same mesh as in the simulation of the inviscid flows. For these
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Figure 15. Pressure coefficient on the surface of NACA 0012 airfoil for M∞ = 0.8, 	= 10◦,
Re= 73. DFD: CL = 0.578, CD = 0.222. Body-fitted mesh: CL = 0.587, CD = 0.222. Results of

Reference [14]: CL = 0.589, CD = 0.219.

two cases, the same calculations were also performed on the structured C-type mesh (70× 320)
and the non-slip condition was imposed on the wall.

In the third case, the Mach number of free stream is 0.8, the angle of attack is 10◦ and
the Reynolds number is 73. The pressure coefficient distribution on the surface is shown in
Figure 15, which is compared with the results obtained by the body-fitted mesh solver. The lift
and drag coefficients computed by the local DFD method are very close to the results obtained on
the body-fitted mesh and those reported in Reference [14]. They also agree well with the results
reported in Reference [24]. The skin friction distribution is shown in Figure 16. Also displayed
in this figure are the results obtained on the body-fitted mesh and Muller’s results given in
Reference [25]. Obviously, the agreement is very good. This shows that the shear stress can be
predicted well by the local DFD scheme.

In the fourth case, the Mach number of free stream is 0.8, the angle of attack is 10◦ and the
Reynolds number is 500. The surface pressure coefficient distribution is presented in
Figure 17 and compared with the results obtained by the body-fitted mesh solver. The lift and
drag coefficients computed by the DFD method are close to the results obtained on the body-fitted
mesh and those reported in References [14, 24].

6.4. Inviscid transonic flow around oscillating NACA0012 airfoil

The performance of the local DFD method for unsteady flows around moving bodies is investigated
with the simulation of the inviscid transonic flow past an oscillating NACA0012 airfoil. The free-
stream Mach number is taken as 0.8, the range of pitching angle is between −0.5◦ and 4.5◦, and
the oscillation period is T = 20 (normalized by L/a∞ where L is the airfoil length and a∞ is the
sound speed of free stream), which results in a circular frequency of �= 
/10.
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Figure 16. Skin friction coefficient on the surface of NACA0012 airfoil for M∞ = 0.8, 	= 10◦, Re= 73.
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Figure 17. Pressure coefficient on the surface of NACA0012 airfoil for M∞ = 0.8, 	= 10◦,
Re= 500. DFD: CL = 0.464, CD = 0.153. Body-fitted mesh: CL = 0.450, CD = 0.149. Results of

Reference [14]: CL = 0.447, CD = 0.147.
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Figure 18. Pressure coefficient on the surface of oscillating NACA0012 airfoil and contours of pressure
for T = 32.0 and 	= 0.5◦ (pitching downward), M∞ = 0.8, � = 
/10.
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Figure 19. Pressure coefficient on the surface of oscillating NACA0012 airfoil and contours of pressure
for T = 35.0 and 	= −0.5◦, M∞ = 0.8, � = 
/10.

In this test case of the flow around a moving body, the mesh is fixed, and the number of
computational points is about 41 400 at each time step. The DFD results are compared with the
DG (discontinuous Galerkin) finite element results in Reference [3] which are obtained on a moving
mesh with 32 768 quadrangles.

The pressure coefficient CP on the airfoil surface and contours of pressure at several time steps
are shown in Figures 18–22. In Figure 23, the hysteresis curves of the lift and drag coefficients
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Figure 20. Pressure coefficient on the surface of oscillating NACA0012 airfoil and contours of pressure
for T = 37.5 and 	= 0.23◦ (pitching upward), M∞ = 0.8, � = 
/10.
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Figure 21. Pressure coefficient on the surface of oscillating NACA0012 airfoil and contours of pressure
for T = 40.0 and 	= 2.0◦ (pitching upward), M∞ = 0.8, � = 
/10.

CL and CD are shown. Comparisons between the DFD results and the DG finite element results,
except for contours of pressure, are also shown in Figures 18–23. The results computed by the
two methods agree each other. Due to differences of the schemes (diffusion terms in particular)
and meshes used, the small deviations that appear in Figures 18–23 are acceptable.
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Figure 22. Pressure coefficient on the surface of oscillating NACA0012 airfoil and contours of pressure
for T = 47.0 and 	= 4.0◦ (pitching downward), M∞ = 0.8, � = 
/10.
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Figure 23. Lift and drag coefficients on oscillating NACA0012 airfoil, M∞ = 0.8, � = 
/10.

7. CONCLUSIONS

In this work, the local DFD method was presented to solve the compressible Navier–Stokes/Euler
equations in the conservative form. Being different from classical numerical methods, the discrete
form of the PDEs can involve some points outside the solution domain. All mesh points are
classified into three groups: (1) the points inside the solution domain; (2) the points outside the
solution domain on which the computations at some interior points near the wall boundary depend;
and (3) the points outside the solution domain which are never used. The values of flow variables at
the exterior dependent points are updated at each time step, to satisfy the wall boundary condition,
by the approximate form of the solution along the normal direction to the wall boundary.
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In the local DFD method, the boundary can be superimposed upon computational meshes. The
mesh can stay fixed while the body is moving, and there is no need to generate a new mesh or
deform the previous mesh at each time step. In principle, the mesh generation for complex solution
domains becomes quite easy.

A number of numerical experiments have been performed for the flows over fixed and moving
bodies, which showed that the local DFD results compare very well with those obtained on the
body-fitted meshes and the reference data available in the literature.
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